
REVIEW ARTICLE

Accelerating antibiotic discovery through artificial
intelligence
Marcelo C. R. Melo 1,2,3,5, Jacqueline R. M. A. Maasch 1,2,3,4,5 &

Cesar de la Fuente-Nunez 1,2,3✉

By targeting invasive organisms, antibiotics insert themselves into the ancient struggle of the

host-pathogen evolutionary arms race. As pathogens evolve tactics for evading antibiotics,

therapies decline in efficacy and must be replaced, distinguishing antibiotics from most other

forms of drug development. Together with a slow and expensive antibiotic development

pipeline, the proliferation of drug-resistant pathogens drives urgent interest in computational

methods that promise to expedite candidate discovery. Strides in artificial intelligence (AI)

have encouraged its application to multiple dimensions of computer-aided drug design, with

increasing application to antibiotic discovery. This review describes AI-facilitated advances in

the discovery of both small molecule antibiotics and antimicrobial peptides. Beyond the

essential prediction of antimicrobial activity, emphasis is also given to antimicrobial com-

pound representation, determination of drug-likeness traits, antimicrobial resistance, and de

novo molecular design. Given the urgency of the antimicrobial resistance crisis, we analyze

uptake of open science best practices in AI-driven antibiotic discovery and argue for open-

ness and reproducibility as a means of accelerating preclinical research. Finally, trends in the

literature and areas for future inquiry are discussed, as artificially intelligent enhancements to

drug discovery at large offer many opportunities for future applications in antibiotic

development.

Antimicrobial resistance (AMR) in clinically significant bacteria is undermining the effi-
cacy of existing antibiotics, incurring concerning levels of global morbidity and
mortality1. The Centers for Disease Control and Prevention estimates that 2.8 million

infections are caused by antibiotic-resistant bacteria in the United States annually, leading to
35,000 deaths from such untreatable infections2. Current evidence also suggests that the solution
may be part of the problem itself: antibiotics have been shown to cause significant damage to the
gut microbiome, reducing species diversity and encouraging the evolution and dissemination of
AMR genes3. Antibiotics under clinical trial are generally analogs to existing drugs for which
AMR mechanisms have already emerged1, further underscoring the need for novel approaches in
antibiotic discovery.

Compounding this issue, antibiotic development is a slow, expensive, and failure-prone
process that can span over 10 years and cost hundreds of millions of dollars4. Between 2014 and
2019, only 14 new antibiotics were developed and approved5. In a survey of nearly 186,000
clinical trials for over 21,000 compounds, the probability of success for new drugs that treat
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infectious diseases was 25.2%6. For orphan drugs, i.e., those that
treat rare infectious diseases, this probability dropped to only
19.1%6. This risk of failure drives corporations to pursue research
and development with a higher guarantee of return on invest-
ment, opening the way for academia to initiate early stages of
antibiotic design and optimization7,8.

Accelerated antibiotic discovery will require computer-aided
prospection for novel drugs with new mechanisms of action
(MOAs)9. It is speculated that 1030–1060 drug-like chemicals
exist10, while 20n variants exist per n-length canonical amino acid
sequence. Although this immense combinatorial space presents a
broad opportunity for computational antibiotic design, an
exhaustive search cannot be achieved on a reasonable timescale.
These challenges strongly incentivize the development of efficient
heuristics and artificially intelligent algorithms for high-
throughput antibiotic discovery. A prominent subdomain of
computer science, artificial intelligence (AI) concerns the study
and development of machines that are capable of learning, pro-
blem-solving, or mimicking other displays of reasoning akin to
natural intelligence. For the purposes of this review, AI will
generally pertain to machine learning (ML), the training of
mathematical models to output predictions when presented with
previously unseen data. The application of ML to drug discovery,
and antibiotic discovery specifically, has been greatly facilitated by
the public availability of empirical datasets (Table 1), advances in
computer engineering, and the proliferation of free and open-
source ML libraries.

The integration of computational tools to expedite drug
development has led to key advances for the rational design of
bioactive compounds efficacious in animal models, thus
demonstrating that computers can yield preclinical antibiotic
candidates9,11. Leveraging advances in protein structure

prediction and modeling, small-molecule antibiotic targets can be
reliably described in atomic detail. Protein structures are then
probed for binding sites, allowing large libraries of compounds to
be used for automated large-scale docking and binding affinity
studies in a process known as virtual screening (VS). This practice
is now integral to many drug development pipelines, receiving
ample attention from the ML community12. The most challen-
ging step in VS is evaluating binding site affinity, driving the
development of ML tools that significantly outperform traditional
binding affinity prediction methods13–15. In recent years, deep
learning (DL) has been used to successfully bypass docking and
affinity estimation entirely, resulting in the identification of a
small-molecule antibiotic active against multiple bacterial
pathogens16.

In this review, we will focus on the application of AI to the
development of two major classes of bioactive compounds: small-
molecule antibiotics and antimicrobial peptides (AMPs). The for-
mer, studied since the beginning of the twentieth century with the
discovery of penicillin and in use for over 70 years, represents the
majority of antibiotics in use today. The latter, a class of small
proteins usually composed of 5 to 50 amino acids, is receiving
increasing attention in research and clinical trials17 due in part to a
relatively low propensity to induce AMR18. Research topics will be
introduced by following the logical flow of an ML pipeline, starting
with compound representation and progressing through trait pre-
diction and novel compound design. ML innovation in general drug
development will be reviewed where it has cross-over utility for
antibiotic-specific applications. Trends in the literature and direc-
tions for future research will be discussed, including prospects for
increasing data availability, computational–experimental collabora-
tion, and innovation in interpretable ML (IML). Additionally, we
provide an original analysis of open science practices among cited

Table 1 Databases for computational antibiotic discovery.

Database Site

General drug discovery and biomolecular informatics
Binding MOAD160 https://bindingmoad.org
BindingDB161 https://www.bindingdb.org/
BRENDA162 https://www.brenda-enzymes.org
ChEMBL163 https://www.ebi.ac.uk/chembl/
Drug Design Data Resource https://drugdesigndata.org
Drug Repurposing Hub140 https://clue.io/repurposing
DrugBank164 https://go.drugbank.com
MoleculeNet165 http://moleculenet.ai
Protein Data Bank166 https://www.wwpdb.org
PubChem167 https://pubchem.ncbi.nlm.nih.gov
Search Tool for Interacting Chemicals168 http://stitch.embl.de
Side Effect Resource169 http://sideeffects.embl.de
SuperTarget170 http://insilico.charite.de/supertarget/
Therapeutics Data Commons https://zitniklab.hms.harvard.edu/TDC
Therapeutic Target DB171 http://db.idrblab.net/ttd/
UniProt172 https://www.uniprot.org
ZINC173 https://zinc15.docking.org

Exclusively infectious disease
ADAM174 http://bioinformatics.cs.ntou.edu.tw/adam/
ADAPTABLE175 http://gec.u-picardie.fr/adaptable
Collection of Antimicrobial Peptides176 http://www.camp.bicnirrh.res.in
Data Repository of Antimicrobial Peptides177 http://dramp.cpu-bioinfor.org
DB of Antimicrobial Activity and Structure of Peptides178 https://dbaasp.org
dbAMP179 http://140.138.77.240/~dbamp
MEGARes: Antimicrobial DB for High-Throughput Sequencing180 https://megares.meglab.org
National DB of Antibiotic-Resistant Organisms https://www.ncbi.nlm.nih.gov/
Pathosystems Resource Integration Center181 https://www.patricbrc.org
Tropical Disease Research Targets182 https://tdrtargets.org

Public databases (DB) of general use in computational drug discovery and biomolecular informatics, as well as those specific to antimicrobial discovery and resistance.
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research and discuss the potential for best practices in open and
reproducible ML to expedite antibiotic discovery.

Methods for optimizing compound representation
The search for optimal measurements of quantitative
structure–activity relationships (QSAR) drove over 50 years of
research and innovation19. Aiming to computationally predict the
activity of newly designed molecules, saving time and money by
avoiding synthesis and experimentation on inactive compounds,
researchers relied on computational representations of drug
candidates to predict their properties. As it became apparent, the
problem of representing biological or chemical data for use in
computational models is in itself an important field of research.
Likewise, it is an essential component of the computational drug
discovery pipeline (Fig. 1). The variety of information sources and
experimental procedures to describe molecules can rapidly lead to
overwhelming amounts of information, which may cause more
harm than good. For example, in order to describe simple amino
acid residues, over 400 different measurements have been per-
formed and combined in online databases20. For small-molecule
drugs, approaches range from calculating and condensing quan-
tum mechanically derived descriptors21 to calculating topological

properties22,23. The sheer amount of data and the redundant
information contained in multiple measurements makes using all
descriptors impractical or counterproductive. This led to a series
of studies that combined experimental data into reduced
descriptors that maximized information content in as few
dimensions as possible24.

From traditional dimensionality reduction techniques like
principal component analysis (PCA) and singular value decom-
position to feature selection approaches involving χ2 statistical
tests or mutual information estimation, the search for reduced
and information-rich representations has now fully integrated
ML tools and principles. The efforts described below highlight
how the theoretical and methodological advances made in diverse
ML applications and interest areas can be adapted to aid ML-
driven antibiotic development.

A prominent example is the use of graph convolutional net-
works to leverage the geometry and connectivity of molecules to
naturally translate them into graphs, using neural networks to
learn from the chemical structure itself25. A similar approach was
taken to study and predict protein structures26. In an extensive
benchmark study of available methods and datasets27, it was
found that neural networks can enhance not only the process of
describing a drug based on a set of molecular descriptors but also

Fig. 1 Computational antibiotic discovery pipeline. The figure provides an overview of data and methods used in antibiotic discovery and development
using AI. From left to right, key elements in the drug development process are exemplified. The first part of any AI-driven project is gathering the
experimental information that will enable model creation. The data are then transformed into AI-ready representations. Subsequently, models are trained
using algorithms that can range from traditional decision trees to novel neural networks. Finally, trained models can be used to predict diverse qualities,
e.g., the effectiveness of an antibiotic, potential for toxic activity, development of resistance, or the structure of novel compounds that exhibit desirable
traits.
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the determination of such molecular descriptors themselves. This
work was extended to create a series of antimicrobial compounds
that were correctly predicted as active despite being structurally
distant from known antibiotics 16.

While common in the fields of signal processing and natural
language processing (NLP), recurrent neural networks (RNNs)
have now been adapted to process simplified molecular-input
line-entry system (SMILES) representations, which encode
structures of chemical species using simple text strings. In one
case, researchers used long short-term memory (LSTM) gen-
erative neural networks to learn from SMILES representations of
known drugs and then used the trained neural network to gen-
erate new compounds28. Alternatively, RNNs have been com-
bined with reinforcement learning to autonomously create an
embedded representation for drugs based on their SMILES
representations29.

RNNs have emerged as a natural embedding approach for
AMP sequences, given their ability to parse sequence-based
inputs. Based on a one-hot encoding of amino acid residues (i.e., a
20-mer vector with 19 “zeros” and a single “one” at unique
positions to indicate different residues), both an LSTM-based
autoencoder30 and multiplicative-LSTM neural network31 have
been trained to create embedded representations for peptide
sequences. The latter led to an embedded representation that
could be used to derive a protein’s secondary structure, thermal
stability, deep mutational scanning classification, and even the
functional impact of mutations31.

Antimicrobial activity prediction
Predicting antimicrobial activity is at the core of ML integration
into antibiotic development, driving over 10 years of research to
provide new solutions for the QSAR problem7 and attracting a
variety of approaches32 (Table 2). For instance, to improve upon
previous attempts to design new drugs based on the analysis of

chemical fragments and their properties, researchers used mul-
tinomial logistic regression to classify fragments that comprise
molecules in a training set. This process created a “vocabulary” of
fragments that could then be combined to propose new anti-
biotics active against the Gram-negative bacterium Pseudomonas
aeruginosa33.

In a recent effort to repurpose previously developed drugs as
antibiotics16, a combination of neural network models was used
to create a new representation for chemical compounds, and then
assess their antimicrobial potential. Interestingly, this effort also
made use of ensemble learning34, a technique that combines
multiple copies of a model (with different weights or archi-
tectures) and takes a weighted vote of each model into con-
sideration to achieve the final prediction35. The underlying
assumption behind ensemble learning is that errors made by one
model will be compensated for by others, and this assumption has
been confirmed in applications ranging from proinflammatory
peptide identification36 to prediction of drug side effects37.

Classical ML techniques such as support vector machines
(SVMs) have been applied to describe AMPs and quantify their
MOAs38,39. Alternatively, deep neural networks have been used
to predict antimicrobial properties from simplified residue
representations of arbitrary amino acid sequences. In 2009,
researchers combined 44 peptide descriptors traditionally used
for QSAR studies and used them as inputs for an artificial neural
network that predicted peptide activity against P. aeruginosa40.
More recently, a 2020 study created a deep convolutional neural
network model based on a simplified amino acid vocabulary that
translated the natural 20 amino acids into pseudo residue types41.
This model predicts antimicrobial activity in small peptides and is
available in a web server. Extreme gradient boosting has been
used for genome-based prediction of minimum inhibitory con-
centrations for 20 antibiotics against Klebsiella pneumoniae42 and
15 antibiotics against nontyphoidal Salmonella strains43. Using
RNNs44, a combination of input representation and regression

Table 2 Machine learning models for antibiotic discovery.

Public release

Algorithm Code Data Software Software type

Antimicrobial activity prediction
Artificial neural network40 Yes
Support vector machine38 Yes
Multinomial logistic regression33 Yes
LSTM RNN44 Yes Yes Yes Command-line tool
XGBoost42 Yes Yes Yes Command-line tool
Directed-message passing neural network16 Yes Yes Yes Web server, Docker container
DBSCAN47 Yes Yes Web server
DBSCAN48 Yes Web server
Convolutional neural network41 Yes Yes Web server
Generalized linear model49

Random forest50

Hemolytic activity prediction
Classification and regression trees55 Yes
Artificial neural network54 Yes Yes Web server
Gradient boosting classifiers56 Yes Yes
Support vector machine183 Yes Yes Web server, mobile app, standalone

De novo antibiotic design
Variational autoencoder45 Yes
LSTM RNN30 Yes Yes Yes Command-line tool
LSTM RNN120

Generative adversarial network119 Yes Yes Yes Command-line tool

Machine learning models cited in this review pertain specifically to antimicrobial compound discovery, i.e., those that predict antimicrobial activity, those trained on antimicrobial compound data to
predict drug-likeness, and those that generate potential antimicrobials. Public release of model source code, training and/or testing data, and/or associated software tools are noted. Criteria for data
release were lenient, with “yes” indicating partial or full release of training or testing data.
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models were created to select peptide sequences with anti-
microbial activity. Finally, through a variational autoencoder
approach, peptide sequences were embedded in a latent space that
was subsequently searched for new AMP sequences45.

The variety of techniques utilized thus far correlates with an
increasing focus on AMPs, which have been regarded as a major
source of new antibiotics to tackle the development of resistance
in microbes9. The ability of AMPs to limit AMR development has
been related to their varied MOAs46, which has led researchers to
focus on classifying peptides and discovering new MoAs. Speci-
fically, DBSCAN was used for cluster-based prediction of AMP
activity against Gram-negative bacteria47, with promising candi-
dates being synthesized and tested in vitro48.

The direct combination of experimental and ML techniques in
a closed-loop approach has also benefited the development of
new AMPs. Starting from a template with known antimicrobial
activity and a series of homologous sequences, it was possible to
train a generalized linear model to create new AMPs with 160-
fold increased antimicrobial activity against Escherichia coli49.
Since patterns found by generalized linear models can be directly
interpreted by analyzing the model weights, one can directly
translate the model into actionable information for AMP design.

While most ML-based antibiotic development approaches
focus on creating new representations for drug candidates and
new models to predict their activity based on molecular
descriptors, the phenotypic drug discovery approach focuses not
on describing the molecule itself but on its effects on target
organisms. For example, a recent study used a random forest
model to predict antimicrobial activity based on featurization of
cell imaging, avoiding detailed description of the molecules
themselves50. This approach can expand the search space for new
drugs by avoiding direct comparisons between molecular
descriptors and focusing instead on their effects on pathogens.

Drug-likeness prediction
ML can yield a fuller aggregate picture of antibiotic therapeutic
potential than simply predicting antimicrobial activity. Attempts
to quantitatively distinguish the subsets of chemical space that
have therapeutic potential from those which do not have yielded
various schemas, including the introduction of the Rule of 5 in
199751 and subsequent concepts of drug-likeness and lead-
likeness. Prediction of drug-likeness has been refined and
increasingly automated over recent decades, with traits of interest
including absorption, distribution, metabolism, excretion, and
toxicity (ADMET)10,52. ML-based prediction of binding affinity
can also accelerate high-throughput screening and structure-
based drug lead optimization by pinpointing candidates with
more favorable drug–target interactions, as discussed in recent
reviews15,53.

Like many ML problems, drug-likeness prediction can be
attempted using a wide array of algorithms. While experimental
observations often require a specific methodology or well-
established gold standard, diverse ML algorithms can often pro-
vide comparable performance for a given classification or
regression problem. There is often no way to know a priori which
algorithm will perform best, although theoretical knowledge can
guide decision-making. Therefore, it is important to follow a
rigorous model selection process that compares multiple algo-
rithms (e.g., a Gaussian process, random forest, SVM, and neural
network) across several performance metrics that are salient to
the particular use case. In this section, we note the use of diverse
algorithms that have been applied to multiple drug-likeness
prediction problems.

Dangerous pharmacokinetic properties and toxicity are leading
causes of clinical trial failure52, incentivizing pre-trial in silico

exploration. Host cell toxicity is a critical ADMET endpoint and a
significant risk in antibiotic development, motivating the design
of predictive tools for mammalian red blood cell toxicity, kidney
cell toxicity, and other forms of eukaryotic cell damage. Hemo-
lytic activity, or the ability to burst red blood cells, has been a
major focus of therapeutic development given that numerous
drugs enter the bloodstream. Prediction of hemolytic activity in
AMPs and antimicrobial peptidomimetics has been explored
using neural networks54, classification trees55, and gradient
boosting classifiers56. Consensus model-based software for
hemolytic activity prediction has also been released for general
applications in drug development, with an emphasis on small
molecules57 and saponins58. A feedforward fully connected
neural network has demonstrated comparable performance to
prior random forest models for the prediction of drug candidate
cytotoxicity59. Deep Taylor Decomposition was used to identify
the most significant features in DL-based cytotoxicity classifica-
tion, with an emphasis on visualization to facilitate
interpretability59. Additional antibiotic side effects can also be
foreshadowed using ML, as has been done for the seizure-
inducing potential of enoxacin, a broad-spectrum fluor-
oquinolone antibacterial60.

The development of AMP-based antibiotics must also consider
peptide solubility and stability, which are necessary for manu-
facture and efficacy. Pharmaceutically viable AMPs will be solu-
ble, a trait that can be predicted from amino acid sequence61.
Protein solubility prediction has used neural network61,62, gra-
dient boosting machine63, logistic regression classifier64, SVM65,
and random forest models66. Degradation via the action of pro-
teolytic enzymes is a significant concern when evaluating the
stability of peptide-based antibiotics67,68. The in silico identifi-
cation of putative proteolytic cleavage sites can inform AMP lead
selection and guide sequence optimization for increased stability.
Cleavage site prediction has been explored through the lens of
drug development69 and other protein informatics applications
using classification and regression mode SVM70–74, convolutional
neural network75, conditional random field classifier76, and
logistic regression models77. Similarly, the stability of drug-like
chemicals has been modeled using an attention-based graph
convolution neural network78 and Naive Bayes classifier79.

As outliers to original drug-likeness definitions expand the
boundaries of these criteria, new qualitative endpoints and
quantitative thresholds have come under consideration80. Col-
lateral damage to the gut microbiome has been proposed as one
additional ADMET endpoint, and consensus model-based soft-
ware has been released for ML prediction of microbiome
damage58. Indeed, disruption to the microbiome is a significant
side effect of antibiotics and has been implicated in AMR
evolution3. For this particular endpoint, species-specific anti-
microbial activity prediction may be the answer: ML can aid in
the selection of candidates with high specificity for target
pathogens and low activity against known commensals.

AMR prediction
Unlike most therapeutics, antibiotics are designed to kill a living
target with the capacity for resistance evolution. The near-inevitability
of AMR evolution thus adds an additional urgent consideration that
is absent from most other drug development niches. Incentives to
develop less resistance-prone countermeasures are drawing research
to historically underexplored sources of inspiration for novel anti-
biotic design9. Likewise, the need to track AMR emergence,
mechanisms, and dynamics are raising new applied ML questions
unique to computational antibiotic discovery, bacterial genomics, and
infectious disease epidemiology. While ML-based AMR prediction
may be clinically useful for informing AMR diagnosis and antibiotic
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prescription81,82, it may also be experimentally useful in the drug
development process. We anticipate that ML approaches to AMR
genomics in epidemiology and medicine will increasingly be adapted
specifically for drug development purposes, e.g. ML-informed resis-
tance evolution experiments for new lead compounds.

Protein space is one such underexplored area that is expected
to yield future antibiotics with minimal AMR risk. Antimicrobial
host defense peptides, including encrypted AMPs released from
precursor proteins through proteolytic cleavage, have notably
emerged as reservoirs for low AMR-risk antibiotic templates due
in part to a tendency to act on multiple cellular targets18,46,83,84.
Small-molecule AMR has also been observed to coincide fre-
quently with a collateral sensitivity to AMPs, yet rarely with AMP
cross-resistance85. Together with the fact that protein target
modifications are a common AMR mechanism, this suggests the
large potential for cross-over between ML and traditional protein
informatics in AMR research. However, the majority of existing
ML models forgo this route in favor of pathogen genetic and
genomic inputs. Although model design strategies are expected to
diversify, the current state of ML for AMR learns from the bac-
terial genome rather than drug or molecular target features.

Pathogen genomic data have been used to build ML models of
antibiotic susceptibility and resistance phenotypes in clinically
relevant bacteria, including K. pneumoniae42, E. coli86–88, P.
aeruginosa86,89, Mycobacterium tuberculosis90,91, and Staphylo-
coccus aureus86. While ML models of AMR may be trained on
drug- and bacteria-specific data92–94, a more agnostic approach
has been explored using a neural network to facilitate environ-
mental metagenomic analysis95. However, predictive perfor-
mance has been observed to vary significantly by antibiotic, target
species, genomic data sampling method, and resistance
mechanism complexity82,96, suggesting that AMR prediction may
at times require relatively context-specific modeling. A free web
server and standalone software have been released for SVM-based
prediction of efflux-mediated AMR97. ML-assisted metagenomic
analysis has implicated AMR genes associated with antibiotic-
induced microbiome perturbations98. A novel combination of
protein homology modeling and LASSO penalized logistic
regression has been used to investigate the horizontal transfer of
antibiotic resistance determinants from gut commensals to bac-
terial pathogens99.

While “black-box” approaches may limit the utility of ML for
AMR-risk reduction81, IML can enable models to suggest causal
factors in AMR at the organismal and population scale. Coupling
ML with gene–protein structure mapping to investigate drivers of
M. tuberculosis AMR evolution, interactions between genes con-
ferring AMR were hypothesized to manifest as correlations in
their weights and signs across the hyperplanes of an SVM
ensemble100. An ML-integrated genome-scale model using data
from microbial genome-wide association studies has enabled
allele-parameterized flux balance analysis to reveal metabolomic
insights into M. tuberculosis AMR101. Open-source software
using protein orthology-based gene variant mapping has also
been developed for interpretable AMR prediction96. Computa-
tionally characterizing the molecular signatures and population
dynamics of AMR might help indicate which MOAs are overused
and which present promising new avenues, even on a regional
scale. Using training data from multiple countries, geographic
analysis of predicted AMR genes revealed population dynamics
that could be supported by national rates of multidrug-resistant
tuberculosis and antibiotic prescription trends100.

Generative DL for antibiotic discovery
Generative DL can lend itself to computational antibiotic dis-
covery in multiple ways. Here, we will focus on de novo

molecular design, which often employs generative adversarial
networks (GANs), variational autoencoders (VAEs), or related
architectures. Comprised of dueling generative and discriminative
models, GANs infer the probability distribution from which
training data derive in order to construct novel samples from this
distribution. Engaging in a two-player minimax game, both
models are trained to optimize the error rate of the discriminator:
while the generator is trained to maximize the likelihood that the
discriminator fails to distinguish empirical data from synthetic
data, the discriminator is trained to minimize this likelihood102.
Like classical autoencoders, VAEs are trained to encode inputs to
a compressed representation and then to decode an approximate
reconstruction, learning the latent variables describing the
training data in the process. However, VAEs are directed prob-
abilistic models, learning continuous latent variables through a
variational Bayesian approach to generative DL103. This section
will note the use of several variations on these common gen-
erative architectures as applied to drug discovery.

Generative DL has found diverse chemical and protein engi-
neering applications104, including inverse design of inorganic
matter105 and graph-based neural network models for the NP-
hard106 inverse protein folding problem26,107. Increasingly, gen-
erative DL is applied explicitly to drug discovery, whereby syn-
thetic molecular designs are proposed from drug-like chemical
spaces. De novo drug candidate design has been attempted with
deep reinforcement learning coupling generative and predictive
neural networks29, deep generative adversarial autoencoder
architecture108, differentiable neural computer architecture with
reinforcement learning and adversarial training109,110, deep
neural networks coupled with Monte Carlo tree search111, and an
autoencoder–GAN combination for both random and target-
biased molecular design112. Given their suitability for sequential
data, generative RNNs taking SMILES inputs have drawn atten-
tion in drug design113,114 and have demonstrated relatively broad,
uniform, and complete coverage of chemical space115,116.
Experimentally validated membranolytic anticancer peptides have
been generated by both an LSTM RNN with transfer learning117

and a counterpropagation artificial neural network optimized by a
genetic algorithm118.

A burgeoning interest in generative DL within chemical engi-
neering, protein engineering, and drug development at large
suggests that similar techniques may be increasingly applied to
AMP and small-molecule antibiotic design. To date, a GAN has
been used to generate an AMP with a significantly lower mini-
mum inhibitory concentration against E. coli than ampicillin119.
Additional preliminary success in AMP discovery is described in a
proof-of-concept study coupling a VAE with experimental
validation45. A generative LSTM RNN with transfer learning has
demonstrated success in reconstructing molecules known to target
S. aureus after pretraining on a large generalized dataset and fine-
tuning on a smaller set of target-specific bioactive molecules120.
An RNN with unidirectional LSTM cells for de novo AMP design
observed 82% of generated peptides to be putative AMPs, while
only 65% of random permutations from the amino acid dis-
tribution of the training data were predicted to be antimicrobial30.

Openness and reproducibility
In this section, we present an argument for increasing openness
and reproducibility in ML-based antibiotic discovery. This
argument hinges on a two-pronged crisis: (1) the global public
health crisis of AMR, slow antibiotic development rates, and
emerging infectious diseases and (2) the reproducibility crisis
currently plaguing AI. We conclude with an original analysis of
open science practices among the publications cited in this
review.
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Accelerating antibiotic discovery through open information
and technology exchange carries both practical and ethical
weight. As evidenced by poignant examples from the COVID-19
pandemic, factors such as AMR121, sudden pathogen emergence,
unexpected large-scale losses in quality of life and economic
security122, and structural inequities that render some popula-
tions disproportionately vulnerable123 raise unique questions of
urgency and justice in infectious disease control. These questions
heighten the need for swift research and development, evoking
calls for increased openness under global public health crises124.
We argue that similar calls should extend to the global crisis of
AMR evolution, and thus to computational antibiotic discovery.

The international movement toward open-access publishing
represented by groups like cOAlition S125 signal a growing con-
cern for transparency, reproducibility, and equitable access to
information within the scientific community. Effective 2021, Plan
S dictates that publications resulting from public and private
grants of participating bodies “must be published in Open-Access
Journals, on Open-Access Platforms, or made immediately
available through Open-Access Repositories without embargo”
(https://www.coalition-s.org/plan_s_principles/). Nevertheless,
open-access publishing addresses only one facet of computational
openness and reproducibility. With stakes as high as they are in
computational antibiotic discovery, we call for a more compre-
hensive set of open science best practices.

An open science regime that ensures computational reprodu-
cibility can accelerate ML-based antibiotic discovery through free
public access to (1) source code, (2) training and testing data, and
(3) published findings. Computational reproducibility facilitates
the external validation of published claims while encouraging the
dissemination of knowledge and methods. However, standards of
openness and reproducibility in biomedical ML are still subject to
debate126, and some argue that AI generally suffers from a
reproducibility crisis, not unlike that of psychology127. Repro-
ducibility challenges common to ML (e.g., verbal descriptions in
lieu of source code omitting essential hyperparameter values or
random state seeds) can also have detrimental interactions with
challenges unique to biomedicine (e.g., patient privacy laws pre-
cluding data sharing)128.

Although releasing source code, training data, and testing data
could mitigate reproducibility concerns while increasing the sci-
entific value of AI research126, an analysis of 400 general AI
conference papers revealed that only 6% released code, 54%
released pseudocode, and ~30% released test data127. Within ML
for the life sciences and medicine specifically, a recent review
found that 50% of 300 publications released software, while 64%
released data129. A review of 511 studies found that papers
applying ML to healthcare data underperformed relative to NLP,
computer vision, and general ML on multiple metrics of repro-
ducibility, including code release rates130. A systematic review of
415 studies on ML-based image analysis for COVID-19 diagnosis
found that all publications contained serious methodological
flaws or failed to report key information needed for reproduci-
bility and substantiation of claims, such that not a single model
was of clinical use131.

Confounding factors such as lack of incentives in academia or
misaligned objectives in the private sector may further hinder the
adoption of open science practices. While open-access journals
continue to grow, many prestigious scientific journals charge
premiums over publication fees in order to make articles open
access. Authors then face a tough choice between funding their
research or paying premiums to make their publications free to all
readers. Indeed, a recent study showed that authors of open-
access publications in US research institutions tend to have more
access to funding and belong to more advanced career stages132.
Exemplifying the conflict between researchers and publishers, the

recent 2-year-long negotiation between the University of Cali-
fornia system and Elsevier resulted in the largest deal for open-
access publishing for scientific articles in North America133.
Interestingly, the fields of medical and biological research are
among the most accessible, with biology having the largest frac-
tion of immediately free-to-read articles134.

Beyond publishing research findings, the release of source code
and training and testing data may also raise conflicts regarding
intellectual property (IP) and competitiveness in the private sector.
Therefore, while industry-funded research for antimicrobial
discovery135 can still provide great advances to the field, finding a
balance between open access and closed IP may prove to be a barrier
in itself. Guidance may be found in the efforts of related fields to
establish community-wide standards for responsible and repro-
ducible ML publications, with the Checklist for Artificial Intelligence
in Medical Imaging being a notable example136.

This conversation in AI, and in biomedical ML specifically,
motivated our analysis of code, data, and software release rates
among models cited in this review (Fig. 2). This analysis was
performed post hoc, such that all studies previously cited in this
review that presented an ML model designed for antimicrobial
compound discovery were included. It, therefore, focuses on key
contributions in ML-facilitated antibiotic discovery, rather than
an exhaustive literature analysis. Among ML models pertaining
specifically to antimicrobial compound discovery (Table 2), we
found that 31.6% (6/19) released code, 52.6% (10/19) released
software, and 78.9% (15/19) released some or all training or
testing data. Further, 26.3% (5/19) released code, data, and soft-
ware, while 15.8% (3/19) released nothing in these three cate-
gories. It should be noted that our criteria for data release were
lenient, with “yes” indicating partial or full release of training or
testing data. Although best practice is to release full, metadata-
documented versions of both training and testing datasets in a
manner that is easily accessible for the reader, this is often not the
standard followed in past publications. While our sample size is
small, we hope that these statistics will inspire increased best-
practice public release rates in ML for antibiotic discovery.

Moving forward, inspiration can be found in projects taking a
broad view of openness and reproducibility in drug discovery.
The open-source Therapeutics Data Commons (https://
zitniklab.hms.harvard.edu/TDC/) provides free ML datasets to
lower barriers to entry and accelerate drug development pipelines.
The Open-Access Antimicrobial Screening Program extends the
concept of openness to experimental methods by offering free
compound screening services (https://www.co-add.org). Such
creative counterexamples to the closed research paradigm will
ideally become the norm in antibiotic discovery.

Trends and future directions
In this section, we examine research trends and discuss future
trajectories for ML-facilitated antibiotic discovery. We anticipate
that a trickle-down effect from adjacent ML research will sti-
mulate significant AI-facilitated innovation in antibiotic discovery
over the next decade. We expect this innovation process to
require increased data quality and availability, exploration of new
regions in chemical space, re-exploration of known regions
through drug repurposing, collaboration between computational
scientists and experimentalists, and enhanced explainability
through IML.

To assess the state of publishing on ML for antibiotic discovery,
we measured trends among papers in PubMed, a public database
maintained by the United States National Library of Medicine of
the National Institutes of Health (https://pubmed.ncbi.nlm.nih.gov).
To explore the extent to which research interest has changed over
time, we queried PubMed by year for texts on ML and antibiotics,
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ML and cancer therapies, ML and cardiovascular drugs, or ML and
drugs broadly defined (Fig. 3). Querying for applications of ML to
broad drug development serves as a benchmark against which to
compare engagement levels in antibiotic-specific applications. Dis-
ease group-specific keywords were excluded from the general drug
query to prevent double-counting. As cardiovascular disease and
cancer are the two leading causes of death in the United States137,
querying for these applications provides relevant public health
context for infectious disease applications. Further, a blanket query
for AI and ML keywords with no additional qualifiers provides the
most macroscopic view of research interest in these predictive
methodologies, irrespective of application area. Exact Boolean
search phrases can be found in Supplementary Table 1.

Results indicate increasing research interest in all areas over the
first two decades of the twenty-first century, with the volume of
ML literature focused explicitly on antibiotics and cancer drugs
lagging behind broader drug development applications by nearly
a decade. Surprisingly, publication counts for cardiovascular
drugs and ML remain very low. As the general drug query did not
double-count observations from the major disease groups
explored, these results may suggest that broad applications have
received greater research attention than disease group-specific
applications. However, similar trends in cancer- and antibiotic-
related publication rates suggest that antibiotics might not be
disproportionately neglected. The prevalence of general-interest
lines of inquiry might be due to the relative recency of ML for
drug discovery, whereby the initial establishment phase lays the
groundwork for future specialization. To that end, the sig-
nificantly higher volume of general drug development applica-
tions represents a reservoir of research that is expected to have
trickle-down impacts on disease group-specific research over
time. Further, the proportion of AI and ML publications that
feature applications in general drug discovery, antibiotic dis-
covery, and cancer drug discovery have each increased through-
out the twenty-first century. Our analysis also marks 2018 as a
watershed moment for the use of ML for antibiotic discovery,
coinciding with landmark papers in the field published that year
together with preceding software developments.

Over the third decade of the twenty-first century, prospects for
ML-facilitated antibiotic discovery will partially hinge on data
improvements. As larger data sources become publicly available,
new ML questions can be pursued and ongoing questions can be
revisited with greater rigor. While expanding public sources of
experimental data will be crucial, federated learning across
institutions may facilitate empirical dataset expansion without
sharing private data, as has been done in other areas of biome-
dical ML138. Increased data sharing from both successful and
failed projects in the pharmaceutical industry has also been
proposed as a means of accelerating research and
development139. Existing data can also be further mined for new
purposes, as exemplified by resources like the Drug Repurposing
Hub140. While ML increasingly opens up new regions of chemical
space to exploration, the repurposing of non-antibiotic pharma-
ceuticals could also be a promising avenue for antibiotic
discovery1 that has already benefited from DL methods16.

A recent review observed greater technical correctness among
biomedical ML publications featuring collaborations across
computer science, biology, and medicine129, suggesting that
computational antibiotic discovery might similarly benefit from
combined expertise. Increased coupling of in silico model testing
with in vitro and in vivo validation—and even additional com-
putational methods, e.g., molecular dynamics simulation141—will
help ensure that published models are robust and yield experi-
mentally actionable predictions. Interdisciplinary collaboration
might also facilitate increasingly insightful predictions through
biologically informed IML. As a response to the prevalent “black-
boxing” of ML models’ internal decision-making, IML is an
expanding focus in biomedical computation142 that has been used
to elucidate antibiotic MOAs143. As firmer terminological and
methodological standards alleviate significant confusion sur-
rounding its diverse implementations144, IML is expected to
enable greater human interpretability and causal inference in
antibiotic discovery than opaque algorithms generally allow.
Expanding interpretability for causal biological insights will surely
require both computational creativity and biomedical domain
knowledge.

Fig. 2 Open science practices in machine learning for antibiotic discovery. This Euler diagram visualizes public release rates for source code, training or
testing data, software, and combinations thereof among publications cited in this review (Table 2). Note that data release criteria for this analysis include
both partial and full public availability. This analysis was performed post hoc on studies previously cited in this review.
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Additional new avenues for ML-facilitated antibiotic discovery
are expected to trickle in from algorithmic theory, robotic AI, and
adjacent computational domains. While this review has focused
on ML rather than embodied AI, recent attempts to deploy
intelligent robots in chemical experimentation145 may indicate
the utility of ML-guided autonomous robotics in future antibiotic
discovery. Creative integration of diverse lessons from NLP,

computer vision, generative DL, computer-aided drug design, and
other flourishing areas in ML research will play important roles in
accelerating the urgent task of novel antibiotic discovery.

Data availability
CSV files containing the raw PubMed data outputs visualized in Fig. 3 are available in
Supplementary Data 1. A README file containing resource metadata is also provided.

Fig. 3 Machine learning in antibiotic discovery over time. From top to bottom: total PubMed results when querying for AI/ML keywords only, total results
when querying for AI/ML and general or disease group-specific drug keywords, and the proportion of general AI/ML publications pertaining to each category of
drugs (i.e., total publication counts per drug category scaled by total AI/ML publications per year). Queries sought keywords in titles and abstracts only, with the
general drug query excluding keywords contained in the disease group queries to prevent double-counting. Key events in the broader ML community are noted to
contextualize trend lines. The relevant literature used to set key dates are as follows: development of SVM146 and random forest algorithms147 in 1995; publication
of the R language and software environment in 1996148; development of LSTM in 1997149; development of the Biopython package in 2000150; release of the Java
interface for Weka in 2002151; publication of the Torch library in 2002152; release of Bioconductor in 2004153; the publication of ImageNet in 2009154; the initial
release of Scikit-learn in 2010155; the initial release of XGBoost156 and development of GANs102 in 2014; development of Keras157 and TensorFlow158 in 2015; and
the initial release of PyTorch in 2016159. Exact Boolean searches in PubMed can be found in Supplementary Table 1.
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